Initial
This commit is contained in:
8
CMakeLists.txt
Normal file
8
CMakeLists.txt
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
cmake_minimum_required(VERSION 2.8)
|
||||||
|
|
||||||
|
add_executable(main
|
||||||
|
bitstream.cpp
|
||||||
|
bitstream.h
|
||||||
|
huffman_table.cpp
|
||||||
|
huffman_table.h
|
||||||
|
main.cpp)
|
87
bitstream.cpp
Normal file
87
bitstream.cpp
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
#include <iostream>
|
||||||
|
#include <bitset>
|
||||||
|
#include "bitstream.h"
|
||||||
|
|
||||||
|
#define min(x,y) (((x) > (y)) ? (y) : (x))
|
||||||
|
|
||||||
|
// i.e when stream is 0b12345678 0bABCDEFGH and command is
|
||||||
|
// to read 12 bits:
|
||||||
|
// out = 00000000 00000000 0000EFGH 12345678
|
||||||
|
// to read 2 bits:
|
||||||
|
// out = 00000000 00000000 00000000 00000078
|
||||||
|
int ibitstream::getbits(size_t n) {
|
||||||
|
std::cerr << "To read " << n << " count: " << this->count << " " << this->cache << std::endl;
|
||||||
|
int out = 0, read = 0, to_read;
|
||||||
|
|
||||||
|
if (n > 32 || n < 0) {
|
||||||
|
throw std::runtime_error("When reading bits from bitstream n must be <= 32");
|
||||||
|
}
|
||||||
|
|
||||||
|
// read to cache
|
||||||
|
if (this->count == -1 || this->count >= 8) {
|
||||||
|
if (!(this->is >> cache)) throw std::runtime_error("Stream EOF");
|
||||||
|
this->count = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
while (n > 0) {
|
||||||
|
to_read = min(n, 8 - this->count);
|
||||||
|
std::cerr << "Iter n: " << n << " count: " << this->count << " "
|
||||||
|
<< this->cache << " to_read: " << to_read << " already read: " << read << std::endl;
|
||||||
|
|
||||||
|
// cache & 0b11111000 if count = 3;
|
||||||
|
// cache & 0b10000000 if count = 7;
|
||||||
|
// cache & 0b11111111 if count = 0, etc;
|
||||||
|
uint8_t mask = (((1 << to_read) - 1) << this->count);
|
||||||
|
out |= ((cache & mask) >> this->count) << read;
|
||||||
|
|
||||||
|
std::cerr << "Read result: " << std::bitset<8>((cache & mask) >> this->count) << " " << std::bitset<32>(((cache & mask) >> this->count) << read) << std::endl;
|
||||||
|
|
||||||
|
this->count += to_read;
|
||||||
|
read += to_read;
|
||||||
|
n -= to_read;
|
||||||
|
|
||||||
|
if (this->count == 8){
|
||||||
|
// read another byte
|
||||||
|
if (!(this->is >> cache)) throw std::runtime_error("Stream EOF");
|
||||||
|
this->count = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
void obitstream::writebits(short bits, size_t n) {
|
||||||
|
std::cerr << "Write: " << std::bitset<16>(bits) << " n: " << n << " count: " << this->count << " cache: " << std::bitset<8>(this->cache) << std::endl;
|
||||||
|
int written = 0, to_write;
|
||||||
|
while (n > 0) {
|
||||||
|
to_write = min(n, 8 - this->count);
|
||||||
|
|
||||||
|
uint8_t chunk = (bits & (((1 << to_write) - 1) << written)) >> written;
|
||||||
|
this->cache |= (chunk << this->count);
|
||||||
|
|
||||||
|
this->count += to_write;
|
||||||
|
written += to_write;
|
||||||
|
n -= to_write;
|
||||||
|
|
||||||
|
if (this->count == 8){
|
||||||
|
// flush chunk
|
||||||
|
std::cerr << "Flush: " << std::bitset<8>(this->cache) << std::endl;
|
||||||
|
|
||||||
|
os << this->cache;
|
||||||
|
os.flush();
|
||||||
|
|
||||||
|
this->count = 0;
|
||||||
|
this->cache = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void obitstream::flush() {
|
||||||
|
std::cerr << "Flush: " << std::bitset<8>(this->cache) << std::endl;
|
||||||
|
os << this->cache;
|
||||||
|
os.flush();
|
||||||
|
|
||||||
|
this->cache = 0;
|
||||||
|
this->count = 0;
|
||||||
|
}
|
43
bitstream.h
Normal file
43
bitstream.h
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
#include <cstddef>
|
||||||
|
|
||||||
|
#ifndef BITSTREAM
|
||||||
|
#define BITSTREAM
|
||||||
|
|
||||||
|
class ibitstream
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
// read bits from byte
|
||||||
|
int count;
|
||||||
|
|
||||||
|
// last byte from stream
|
||||||
|
uint8_t cache;
|
||||||
|
|
||||||
|
// Input stream
|
||||||
|
std::basic_istream<char> &is;
|
||||||
|
public:
|
||||||
|
ibitstream(std::basic_istream<char> &is) : count(-1), cache('\0'), is(is) {};
|
||||||
|
|
||||||
|
// Get n bits from stream; at most - 32
|
||||||
|
int getbits(size_t n);
|
||||||
|
};
|
||||||
|
|
||||||
|
class obitstream
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
// written bits to byte
|
||||||
|
int count;
|
||||||
|
|
||||||
|
// last byte from stream
|
||||||
|
uint8_t cache;
|
||||||
|
|
||||||
|
std::basic_ostream<char> &os;
|
||||||
|
public:
|
||||||
|
obitstream(std::basic_ostream<char> &os) : count(0), cache(0), os(os) {};
|
||||||
|
|
||||||
|
// Get n bits from stream; at most - 32
|
||||||
|
void writebits(short bits, size_t n);
|
||||||
|
|
||||||
|
void flush();
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
160
huffman_table.cpp
Normal file
160
huffman_table.cpp
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
#include "huffman_table.h"
|
||||||
|
#include "node.h"
|
||||||
|
|
||||||
|
#include <map>
|
||||||
|
#include <set>
|
||||||
|
#include <queue>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
#define HEADER_SIZE 128
|
||||||
|
|
||||||
|
void initialize_table(const std::map<int, std::set<char> > &huffmanLengths,
|
||||||
|
std::unordered_map<char, std::pair<int, short> > &table)
|
||||||
|
{
|
||||||
|
int nextbl = 0;
|
||||||
|
short code = 0;
|
||||||
|
|
||||||
|
for (auto lenCodePairIt = huffmanLengths.begin(); lenCodePairIt != huffmanLengths.end(); lenCodePairIt++)
|
||||||
|
{
|
||||||
|
auto lenCodePair = *lenCodePairIt;
|
||||||
|
|
||||||
|
for (auto it = lenCodePair.second.begin(); it != lenCodePair.second.end(); it++)
|
||||||
|
{
|
||||||
|
table[*it].first = lenCodePair.first; // save current bit length for code
|
||||||
|
table[*it].second = code;
|
||||||
|
|
||||||
|
// code := (code + 1) << ((bit length of the next symbol) − (current bit length))
|
||||||
|
// code++;
|
||||||
|
|
||||||
|
// if last symbol of length and has symbols with greater length
|
||||||
|
if (next(it) == lenCodePair.second.end() && next(lenCodePairIt) != huffmanLengths.end()) {
|
||||||
|
nextbl = (*next(lenCodePairIt)).first;
|
||||||
|
} else {
|
||||||
|
nextbl = lenCodePair.first;
|
||||||
|
}
|
||||||
|
|
||||||
|
code = (code + 1) << (nextbl - lenCodePair.first);
|
||||||
|
}
|
||||||
|
|
||||||
|
// code <<= 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
HuffmanTable::HuffmanTable(uint8_t *header) {
|
||||||
|
int cnt1, cnt2;
|
||||||
|
std::map<int, std::set<char> > huffmanLengths;
|
||||||
|
|
||||||
|
for (int i = 0; i < HEADER_SIZE; i++) {
|
||||||
|
cnt1 = ((header[i] & 0b11110000) >> 4);
|
||||||
|
cnt2 = (header[i] & 0b1111);
|
||||||
|
if (cnt1 != 0) huffmanLengths[cnt1].insert((char)(i * 2));
|
||||||
|
if (cnt2 != 0) huffmanLengths[cnt2].insert((char)(i * 2 + 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
// build up codes
|
||||||
|
initialize_table(huffmanLengths, this->huffmanCodes);
|
||||||
|
}
|
||||||
|
|
||||||
|
void get_lengths(Node* root, int len,
|
||||||
|
std::map<int, std::set<char> > &huffmanLengths)
|
||||||
|
{
|
||||||
|
if (!root)
|
||||||
|
return;
|
||||||
|
// std::cerr << "Get lengths node: " << root->getChar() << " " << root->getFreq() << root->getLeft() << " " << root->getRight() << std::endl;
|
||||||
|
// found a leaf node
|
||||||
|
if (root->isLeaf()) {
|
||||||
|
// huffmanCode[root->ch] = str;
|
||||||
|
// std::cerr << "Got leaf: " << root->getChar() << std::endl;
|
||||||
|
huffmanLengths[len].insert(root->getChar());
|
||||||
|
}
|
||||||
|
|
||||||
|
get_lengths(root->getLeft(), len + 1, huffmanLengths);
|
||||||
|
get_lengths(root->getRight(), len + 1, huffmanLengths);
|
||||||
|
}
|
||||||
|
|
||||||
|
HuffmanTable::HuffmanTable(std::basic_istream<char> &is) {
|
||||||
|
// count frequency of appearance of each character
|
||||||
|
// and store it in a map
|
||||||
|
std::unordered_map<char, int> freq;
|
||||||
|
char ch;
|
||||||
|
while (is.get(ch)) {
|
||||||
|
freq[ch]++;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cerr << "Calculated freqs" << std::endl;
|
||||||
|
|
||||||
|
// Create a priority queue to store live nodes of
|
||||||
|
// Huffman tree;
|
||||||
|
std::priority_queue<Node*, std::vector<Node*>, NodeComp> pq;
|
||||||
|
|
||||||
|
// Create a leaf node for each character and add it
|
||||||
|
// to the priority queue.
|
||||||
|
for (auto pair: freq) {
|
||||||
|
Node *new_node = new Node(pair.first, pair.second, nullptr, nullptr);
|
||||||
|
pq.push(new_node);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cerr << "Filled PQ: " << pq.size() << std::endl;
|
||||||
|
|
||||||
|
// do till there is more than one node in the queue
|
||||||
|
while (pq.size() != 1)
|
||||||
|
{
|
||||||
|
// Remove the two nodes of highest priority
|
||||||
|
// (lowest frequency) from the queue
|
||||||
|
Node *left = pq.top(); pq.pop();
|
||||||
|
Node *right = pq.top(); pq.pop();
|
||||||
|
|
||||||
|
// Create a new internal node with these two nodes
|
||||||
|
// as children and with frequency equal to the sum
|
||||||
|
// of the two nodes' frequencies. Add the new node
|
||||||
|
// to the priority queue.
|
||||||
|
int sum = left->getFreq() + right->getFreq();
|
||||||
|
Node *new_node = new Node('\0', sum, left, right);
|
||||||
|
pq.push(new_node);
|
||||||
|
}
|
||||||
|
|
||||||
|
// std::cerr << "Built tree: " << pq.size() << " " << pq.top()->getFreq() << std::endl;
|
||||||
|
|
||||||
|
// root stores pointer to root of Huffman Tree
|
||||||
|
Node* root = pq.top();
|
||||||
|
|
||||||
|
std::map<int, std::set<char> > huffmanLengths;
|
||||||
|
get_lengths(root, 0, huffmanLengths);
|
||||||
|
|
||||||
|
// std::cerr << "Got lengths: " << huffmanLengths.size() << std::endl;
|
||||||
|
|
||||||
|
initialize_table(huffmanLengths, this->huffmanCodes);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::pair<int, short> HuffmanTable::operator[](const char &c) {
|
||||||
|
return huffmanCodes[c];
|
||||||
|
}
|
||||||
|
|
||||||
|
void HuffmanTable::write_symbol(obitstream &os, const char &c) {
|
||||||
|
if (huffmanCodes.find(c) == huffmanCodes.end()) throw std::runtime_error("No code in table for char!");
|
||||||
|
|
||||||
|
os.writebits(huffmanCodes[c].second, huffmanCodes[c].first);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t *HuffmanTable::to_header() {
|
||||||
|
uint8_t *header = new uint8_t[HEADER_SIZE];
|
||||||
|
|
||||||
|
for (size_t i = 0; i < HEADER_SIZE; i++)
|
||||||
|
{
|
||||||
|
if (huffmanCodes.find(2 * i) != huffmanCodes.end()) {
|
||||||
|
int len = huffmanCodes[2 * i].first;
|
||||||
|
if (len > 0xf) throw std::runtime_error("Codes longer than 0xf are not allowed!");
|
||||||
|
|
||||||
|
header[i] |= (len & 0xf) << 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (huffmanCodes.find(2 * i + 1) != huffmanCodes.end()) {
|
||||||
|
int len = huffmanCodes[2 * i + 1].first;
|
||||||
|
if (len > 0xf) throw std::runtime_error("Codes longer than 0xf are not allowed!");
|
||||||
|
|
||||||
|
header[i] |= (len & 0xf);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return header;
|
||||||
|
}
|
35
huffman_table.h
Normal file
35
huffman_table.h
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#include <istream>
|
||||||
|
#include <unordered_map>
|
||||||
|
|
||||||
|
#include "bitstream.h"
|
||||||
|
|
||||||
|
#ifndef HUFFMAN_TABLE
|
||||||
|
#define HUFFMAN_TABLE
|
||||||
|
|
||||||
|
class HuffmanTable
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
std::unordered_map<char, std::pair<int, short> > huffmanCodes;
|
||||||
|
public:
|
||||||
|
// Given the list of code lengths length[0..n-1] representing a canonical
|
||||||
|
// Huffman code for n symbols, construct the tables required to decode those
|
||||||
|
// codes.
|
||||||
|
HuffmanTable(uint8_t *header);
|
||||||
|
|
||||||
|
// Build from input stream
|
||||||
|
HuffmanTable(std::basic_istream<char> &is);
|
||||||
|
|
||||||
|
uint8_t *to_header();
|
||||||
|
|
||||||
|
std::pair<int, short> operator[](const char &c);
|
||||||
|
|
||||||
|
void write_symbol(obitstream &os, const char &c);
|
||||||
|
|
||||||
|
// Decode a code from the stream s using huffman table h. Return the symbol or
|
||||||
|
// a negative value if there is an error. If all of the lengths are zero, i.e.
|
||||||
|
// an empty code, or if the code is incomplete and an invalid code is received,
|
||||||
|
// then IG_BAD_CODE_ERR is returned after reading MAXBITS bits.
|
||||||
|
int decode_one_symbol(ibitstream &bs);
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
278
main.cpp
Normal file
278
main.cpp
Normal file
@ -0,0 +1,278 @@
|
|||||||
|
#include <string>
|
||||||
|
#include <queue>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <map>
|
||||||
|
#include <iostream>
|
||||||
|
#include <set>
|
||||||
|
#include <bitset>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "bitstream.h"
|
||||||
|
#include "huffman_table.h"
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
// // A Tree node
|
||||||
|
// struct Node
|
||||||
|
// {
|
||||||
|
// char ch;
|
||||||
|
// int freq;
|
||||||
|
// Node *left, *right;
|
||||||
|
// };
|
||||||
|
|
||||||
|
// // Function to allocate a new tree node
|
||||||
|
// Node* getNode(char ch, int freq, Node* left, Node* right)
|
||||||
|
// {
|
||||||
|
// Node* node = new Node();
|
||||||
|
|
||||||
|
// node->ch = ch;
|
||||||
|
// node->freq = freq;
|
||||||
|
// node->left = left;
|
||||||
|
// node->right = right;
|
||||||
|
|
||||||
|
// return node;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Comparison object to be used to order the heap
|
||||||
|
// struct comp
|
||||||
|
// {
|
||||||
|
// bool operator()(Node* l, Node* r)
|
||||||
|
// {
|
||||||
|
// // highest priority item has lowest frequency
|
||||||
|
// return l->freq > r->freq;
|
||||||
|
// }
|
||||||
|
// };
|
||||||
|
|
||||||
|
// // traverse the Huffman Tree and store Huffman Codes
|
||||||
|
// // in a map.
|
||||||
|
// void encode(Node* root, int len,
|
||||||
|
// map<int, std::set<char> > &huffmanLengths)
|
||||||
|
// {
|
||||||
|
// if (root == nullptr)
|
||||||
|
// return;
|
||||||
|
|
||||||
|
// // found a leaf node
|
||||||
|
// if (!root->left && !root->right) {
|
||||||
|
// // huffmanCode[root->ch] = str;
|
||||||
|
// huffmanLengths[len].insert(root->ch);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// encode(root->left, len + 1, huffmanLengths);
|
||||||
|
// encode(root->right, len + 1, huffmanLengths);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// void initializeTable(const map<int, std::set<char> > &huffmanLengths,
|
||||||
|
// unordered_map<char, std::pair<int, short> > &table)
|
||||||
|
// {
|
||||||
|
// int nextbl = 0;
|
||||||
|
// short code = 0;
|
||||||
|
|
||||||
|
// for (auto lenCodePairIt = huffmanLengths.begin(); lenCodePairIt != huffmanLengths.end(); lenCodePairIt++)
|
||||||
|
// {
|
||||||
|
// auto lenCodePair = *lenCodePairIt;
|
||||||
|
|
||||||
|
// for (auto it = lenCodePair.second.begin(); it != lenCodePair.second.end(); it++)
|
||||||
|
// {
|
||||||
|
// table[*it].first = lenCodePair.first; // save current bit length for code
|
||||||
|
// table[*it].second = code;
|
||||||
|
|
||||||
|
// // code := (code + 1) << ((bit length of the next symbol) − (current bit length))
|
||||||
|
// // code++;
|
||||||
|
|
||||||
|
// // if last symbol of length and has symbols with greater length
|
||||||
|
// if (next(it) == lenCodePair.second.end() && next(lenCodePairIt) != huffmanLengths.end()) {
|
||||||
|
// nextbl = (*next(lenCodePairIt)).first;
|
||||||
|
// } else {
|
||||||
|
// nextbl = lenCodePair.first;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// code = (code + 1) << (nextbl - lenCodePair.first);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // code <<= 1;
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // traverse the Huffman Tree and decode the encoded string
|
||||||
|
// void decode(Node* root, int &index, string str)
|
||||||
|
// {
|
||||||
|
// if (root == nullptr) {
|
||||||
|
// return;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // found a leaf node
|
||||||
|
// if (!root->left && !root->right)
|
||||||
|
// {
|
||||||
|
// cout << root->ch;
|
||||||
|
// return;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// index++;
|
||||||
|
|
||||||
|
// if (str[index] =='0')
|
||||||
|
// decode(root->left, index, str);
|
||||||
|
// else
|
||||||
|
// decode(root->right, index, str);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Builds Huffman Tree and decode given input text
|
||||||
|
// void buildHuffmanTree(basic_istream<char> &is)
|
||||||
|
// {
|
||||||
|
// // count frequency of appearance of each character
|
||||||
|
// // and store it in a map
|
||||||
|
// unordered_map<char, int> freq;
|
||||||
|
// char ch;
|
||||||
|
// while (is.get(ch)) {
|
||||||
|
// freq[ch]++;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// for (auto freqPair : freq) {
|
||||||
|
// cout << "Freq " << freqPair.first << " " << freqPair.second << endl;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Create a priority queue to store live nodes of
|
||||||
|
// // Huffman tree;
|
||||||
|
// priority_queue<Node*, vector<Node*>, comp> pq;
|
||||||
|
|
||||||
|
// // Create a leaf node for each character and add it
|
||||||
|
// // to the priority queue.
|
||||||
|
// for (auto pair: freq) {
|
||||||
|
// pq.push(getNode(pair.first, pair.second, nullptr, nullptr));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // do till there is more than one node in the queue
|
||||||
|
// while (pq.size() != 1)
|
||||||
|
// {
|
||||||
|
// // Remove the two nodes of highest priority
|
||||||
|
// // (lowest frequency) from the queue
|
||||||
|
// Node *left = pq.top(); pq.pop();
|
||||||
|
// Node *right = pq.top(); pq.pop();
|
||||||
|
|
||||||
|
// // Create a new internal node with these two nodes
|
||||||
|
// // as children and with frequency equal to the sum
|
||||||
|
// // of the two nodes' frequencies. Add the new node
|
||||||
|
// // to the priority queue.
|
||||||
|
// int sum = left->freq + right->freq;
|
||||||
|
// pq.push(getNode('\0', sum, left, right));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // root stores pointer to root of Huffman Tree
|
||||||
|
// Node* root = pq.top();
|
||||||
|
|
||||||
|
// map<int, std::set<char> > huffmanLengths;
|
||||||
|
// encode(root, 0, huffmanLengths);
|
||||||
|
|
||||||
|
|
||||||
|
// unordered_map<char, std::pair<int, short> > huffmanCode;
|
||||||
|
// initializeTable(huffmanLengths, huffmanCode);
|
||||||
|
|
||||||
|
// cout << "Huffman Codes are :\n" << '\n';
|
||||||
|
// for (auto pair: huffmanCode) {
|
||||||
|
// cout << pair.first << " " << pair.second.first << " " << bitset<16>(pair.second.second) << '\n';
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // cout << "\nOriginal string was :\n" << text << '\n';
|
||||||
|
|
||||||
|
// // // print encoded string
|
||||||
|
// // string str = "";
|
||||||
|
// // for (char ch: text) {
|
||||||
|
// // str += huffmanCode[ch];
|
||||||
|
// // }
|
||||||
|
|
||||||
|
// // cout << "\nEncoded string is :\n" << str << '\n';
|
||||||
|
|
||||||
|
// // // traverse the Huffman Tree again and this time
|
||||||
|
// // // decode the encoded string
|
||||||
|
// // int index = -1;
|
||||||
|
// // cout << "\nDecoded string is: \n";
|
||||||
|
// // while (index < (int)str.size() - 2) {
|
||||||
|
// // decode(root, index, str);
|
||||||
|
// // }
|
||||||
|
// }
|
||||||
|
|
||||||
|
//// Huffman coding algorithm
|
||||||
|
int main(int argc, char **argv)
|
||||||
|
{
|
||||||
|
// buildHuffmanTree(cin);
|
||||||
|
// 10111010 11110101
|
||||||
|
stringstream ss("\xba\xf5");
|
||||||
|
ibitstream ibs(ss);
|
||||||
|
|
||||||
|
// 10111010 11110101
|
||||||
|
// ^^
|
||||||
|
int a = ibs.getbits(2);
|
||||||
|
cout << bitset<2>(a) << endl;
|
||||||
|
|
||||||
|
// 10111010 11110101
|
||||||
|
// ^^^^
|
||||||
|
int b = ibs.getbits(4);
|
||||||
|
cout << bitset<4>(b) << endl;
|
||||||
|
|
||||||
|
|
||||||
|
// 10111010 11110101
|
||||||
|
// ^^ ^^^^^^^
|
||||||
|
b = ibs.getbits(9);
|
||||||
|
cout << bitset<9>(b) << endl;
|
||||||
|
|
||||||
|
// 10111010 11110101
|
||||||
|
// ^ + overflow
|
||||||
|
try {
|
||||||
|
b = ibs.getbits(10);
|
||||||
|
cout << b << endl;
|
||||||
|
} catch (std::runtime_error &e) {
|
||||||
|
cout << "Got runtime error: " << e.what() << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
ostringstream so("bits: ");
|
||||||
|
obitstream obs(so);
|
||||||
|
|
||||||
|
obs.writebits(0xf, 3);
|
||||||
|
cout << "After 3 bits: " << so.str() << endl;
|
||||||
|
// cache here: 00000111
|
||||||
|
|
||||||
|
obs.writebits(0xf5, 7);
|
||||||
|
// here: Flush: 10101111
|
||||||
|
cout << "After 7 bits: " << so.str() << endl;
|
||||||
|
obs.flush();
|
||||||
|
// here: Flush: 00000011
|
||||||
|
cout << "After flush: " << so.str() << endl;
|
||||||
|
|
||||||
|
|
||||||
|
obs.writebits(0xbeef, 16);
|
||||||
|
cout << "After 0xbeef: " << so.str() << endl;
|
||||||
|
obs.flush();
|
||||||
|
// here: Flush: 0xEFBE - reversed!
|
||||||
|
cout << "After flush: " << so.str() << endl;
|
||||||
|
|
||||||
|
|
||||||
|
string s = "Some long text!!!!\x01\x02\x03\x04";
|
||||||
|
|
||||||
|
stringstream ss1(s);
|
||||||
|
|
||||||
|
HuffmanTable ht(ss1);
|
||||||
|
|
||||||
|
uint8_t *header = ht.to_header();
|
||||||
|
for (size_t i = 0; i < 128; i++)
|
||||||
|
{
|
||||||
|
cout << "Code for " << 2 * i << " and " << 2 * i + 1 << ": " << bitset<8>(header[i]) << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
ostringstream test;
|
||||||
|
|
||||||
|
test << "MASH"; // magic
|
||||||
|
|
||||||
|
for (size_t i = 0; i < 128; i++) {
|
||||||
|
test << header[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
obitstream some_stream(test);
|
||||||
|
|
||||||
|
for (char c : s) {
|
||||||
|
ht.write_symbol(some_stream, c);
|
||||||
|
}
|
||||||
|
some_stream.flush();
|
||||||
|
|
||||||
|
std::cout << "Coding result: " << test.str() << endl;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
24
node.h
Normal file
24
node.h
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
// A Tree node
|
||||||
|
class Node {
|
||||||
|
private:
|
||||||
|
char ch;
|
||||||
|
int freq;
|
||||||
|
Node *left, *right;
|
||||||
|
public:
|
||||||
|
Node(char ch, int freq, Node* left, Node* right) : ch(ch), freq(freq), left(left), right(right) {};
|
||||||
|
|
||||||
|
const int getFreq() { return this->freq; };
|
||||||
|
Node *getLeft() { return this->left; };
|
||||||
|
Node *getRight() { return this->right; };
|
||||||
|
const bool isLeaf() { return !this->right && !this->left; };
|
||||||
|
const char getChar() { return this->ch; };
|
||||||
|
};
|
||||||
|
|
||||||
|
struct NodeComp
|
||||||
|
{
|
||||||
|
bool operator()(Node *l, Node *r)
|
||||||
|
{
|
||||||
|
// highest priority item has lowest frequency
|
||||||
|
return l->getFreq() > r->getFreq();
|
||||||
|
}
|
||||||
|
};
|
955
rfc1951.txt
Normal file
955
rfc1951.txt
Normal file
@ -0,0 +1,955 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Network Working Group P. Deutsch
|
||||||
|
Request for Comments: 1951 Aladdin Enterprises
|
||||||
|
Category: Informational May 1996
|
||||||
|
|
||||||
|
|
||||||
|
DEFLATE Compressed Data Format Specification version 1.3
|
||||||
|
|
||||||
|
Status of This Memo
|
||||||
|
|
||||||
|
This memo provides information for the Internet community. This memo
|
||||||
|
does not specify an Internet standard of any kind. Distribution of
|
||||||
|
this memo is unlimited.
|
||||||
|
|
||||||
|
IESG Note:
|
||||||
|
|
||||||
|
The IESG takes no position on the validity of any Intellectual
|
||||||
|
Property Rights statements contained in this document.
|
||||||
|
|
||||||
|
Notices
|
||||||
|
|
||||||
|
Copyright (c) 1996 L. Peter Deutsch
|
||||||
|
|
||||||
|
Permission is granted to copy and distribute this document for any
|
||||||
|
purpose and without charge, including translations into other
|
||||||
|
languages and incorporation into compilations, provided that the
|
||||||
|
copyright notice and this notice are preserved, and that any
|
||||||
|
substantive changes or deletions from the original are clearly
|
||||||
|
marked.
|
||||||
|
|
||||||
|
A pointer to the latest version of this and related documentation in
|
||||||
|
HTML format can be found at the URL
|
||||||
|
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||||
|
|
||||||
|
Abstract
|
||||||
|
|
||||||
|
This specification defines a lossless compressed data format that
|
||||||
|
compresses data using a combination of the LZ77 algorithm and Huffman
|
||||||
|
coding, with efficiency comparable to the best currently available
|
||||||
|
general-purpose compression methods. The data can be produced or
|
||||||
|
consumed, even for an arbitrarily long sequentially presented input
|
||||||
|
data stream, using only an a priori bounded amount of intermediate
|
||||||
|
storage. The format can be implemented readily in a manner not
|
||||||
|
covered by patents.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 1]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
Table of Contents
|
||||||
|
|
||||||
|
1. Introduction ................................................... 2
|
||||||
|
1.1. Purpose ................................................... 2
|
||||||
|
1.2. Intended audience ......................................... 3
|
||||||
|
1.3. Scope ..................................................... 3
|
||||||
|
1.4. Compliance ................................................ 3
|
||||||
|
1.5. Definitions of terms and conventions used ................ 3
|
||||||
|
1.6. Changes from previous versions ............................ 4
|
||||||
|
2. Compressed representation overview ............................. 4
|
||||||
|
3. Detailed specification ......................................... 5
|
||||||
|
3.1. Overall conventions ....................................... 5
|
||||||
|
3.1.1. Packing into bytes .................................. 5
|
||||||
|
3.2. Compressed block format ................................... 6
|
||||||
|
3.2.1. Synopsis of prefix and Huffman coding ............... 6
|
||||||
|
3.2.2. Use of Huffman coding in the "deflate" format ....... 7
|
||||||
|
3.2.3. Details of block format ............................. 9
|
||||||
|
3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
|
||||||
|
3.2.5. Compressed blocks (length and distance codes) ...... 11
|
||||||
|
3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
|
||||||
|
3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
|
||||||
|
3.3. Compliance ............................................... 14
|
||||||
|
4. Compression algorithm details ................................. 14
|
||||||
|
5. References .................................................... 16
|
||||||
|
6. Security Considerations ....................................... 16
|
||||||
|
7. Source code ................................................... 16
|
||||||
|
8. Acknowledgements .............................................. 16
|
||||||
|
9. Author's Address .............................................. 17
|
||||||
|
|
||||||
|
1. Introduction
|
||||||
|
|
||||||
|
1.1. Purpose
|
||||||
|
|
||||||
|
The purpose of this specification is to define a lossless
|
||||||
|
compressed data format that:
|
||||||
|
* Is independent of CPU type, operating system, file system,
|
||||||
|
and character set, and hence can be used for interchange;
|
||||||
|
* Can be produced or consumed, even for an arbitrarily long
|
||||||
|
sequentially presented input data stream, using only an a
|
||||||
|
priori bounded amount of intermediate storage, and hence
|
||||||
|
can be used in data communications or similar structures
|
||||||
|
such as Unix filters;
|
||||||
|
* Compresses data with efficiency comparable to the best
|
||||||
|
currently available general-purpose compression methods,
|
||||||
|
and in particular considerably better than the "compress"
|
||||||
|
program;
|
||||||
|
* Can be implemented readily in a manner not covered by
|
||||||
|
patents, and hence can be practiced freely;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 2]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
* Is compatible with the file format produced by the current
|
||||||
|
widely used gzip utility, in that conforming decompressors
|
||||||
|
will be able to read data produced by the existing gzip
|
||||||
|
compressor.
|
||||||
|
|
||||||
|
The data format defined by this specification does not attempt to:
|
||||||
|
|
||||||
|
* Allow random access to compressed data;
|
||||||
|
* Compress specialized data (e.g., raster graphics) as well
|
||||||
|
as the best currently available specialized algorithms.
|
||||||
|
|
||||||
|
A simple counting argument shows that no lossless compression
|
||||||
|
algorithm can compress every possible input data set. For the
|
||||||
|
format defined here, the worst case expansion is 5 bytes per 32K-
|
||||||
|
byte block, i.e., a size increase of 0.015% for large data sets.
|
||||||
|
English text usually compresses by a factor of 2.5 to 3;
|
||||||
|
executable files usually compress somewhat less; graphical data
|
||||||
|
such as raster images may compress much more.
|
||||||
|
|
||||||
|
1.2. Intended audience
|
||||||
|
|
||||||
|
This specification is intended for use by implementors of software
|
||||||
|
to compress data into "deflate" format and/or decompress data from
|
||||||
|
"deflate" format.
|
||||||
|
|
||||||
|
The text of the specification assumes a basic background in
|
||||||
|
programming at the level of bits and other primitive data
|
||||||
|
representations. Familiarity with the technique of Huffman coding
|
||||||
|
is helpful but not required.
|
||||||
|
|
||||||
|
1.3. Scope
|
||||||
|
|
||||||
|
The specification specifies a method for representing a sequence
|
||||||
|
of bytes as a (usually shorter) sequence of bits, and a method for
|
||||||
|
packing the latter bit sequence into bytes.
|
||||||
|
|
||||||
|
1.4. Compliance
|
||||||
|
|
||||||
|
Unless otherwise indicated below, a compliant decompressor must be
|
||||||
|
able to accept and decompress any data set that conforms to all
|
||||||
|
the specifications presented here; a compliant compressor must
|
||||||
|
produce data sets that conform to all the specifications presented
|
||||||
|
here.
|
||||||
|
|
||||||
|
1.5. Definitions of terms and conventions used
|
||||||
|
|
||||||
|
Byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||||
|
For this specification, a byte is exactly 8 bits, even on machines
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 3]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
which store a character on a number of bits different from eight.
|
||||||
|
See below, for the numbering of bits within a byte.
|
||||||
|
|
||||||
|
String: a sequence of arbitrary bytes.
|
||||||
|
|
||||||
|
1.6. Changes from previous versions
|
||||||
|
|
||||||
|
There have been no technical changes to the deflate format since
|
||||||
|
version 1.1 of this specification. In version 1.2, some
|
||||||
|
terminology was changed. Version 1.3 is a conversion of the
|
||||||
|
specification to RFC style.
|
||||||
|
|
||||||
|
2. Compressed representation overview
|
||||||
|
|
||||||
|
A compressed data set consists of a series of blocks, corresponding
|
||||||
|
to successive blocks of input data. The block sizes are arbitrary,
|
||||||
|
except that non-compressible blocks are limited to 65,535 bytes.
|
||||||
|
|
||||||
|
Each block is compressed using a combination of the LZ77 algorithm
|
||||||
|
and Huffman coding. The Huffman trees for each block are independent
|
||||||
|
of those for previous or subsequent blocks; the LZ77 algorithm may
|
||||||
|
use a reference to a duplicated string occurring in a previous block,
|
||||||
|
up to 32K input bytes before.
|
||||||
|
|
||||||
|
Each block consists of two parts: a pair of Huffman code trees that
|
||||||
|
describe the representation of the compressed data part, and a
|
||||||
|
compressed data part. (The Huffman trees themselves are compressed
|
||||||
|
using Huffman encoding.) The compressed data consists of a series of
|
||||||
|
elements of two types: literal bytes (of strings that have not been
|
||||||
|
detected as duplicated within the previous 32K input bytes), and
|
||||||
|
pointers to duplicated strings, where a pointer is represented as a
|
||||||
|
pair <length, backward distance>. The representation used in the
|
||||||
|
"deflate" format limits distances to 32K bytes and lengths to 258
|
||||||
|
bytes, but does not limit the size of a block, except for
|
||||||
|
uncompressible blocks, which are limited as noted above.
|
||||||
|
|
||||||
|
Each type of value (literals, distances, and lengths) in the
|
||||||
|
compressed data is represented using a Huffman code, using one code
|
||||||
|
tree for literals and lengths and a separate code tree for distances.
|
||||||
|
The code trees for each block appear in a compact form just before
|
||||||
|
the compressed data for that block.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 4]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
3. Detailed specification
|
||||||
|
|
||||||
|
3.1. Overall conventions In the diagrams below, a box like this:
|
||||||
|
|
||||||
|
+---+
|
||||||
|
| | <-- the vertical bars might be missing
|
||||||
|
+---+
|
||||||
|
|
||||||
|
represents one byte; a box like this:
|
||||||
|
|
||||||
|
+==============+
|
||||||
|
| |
|
||||||
|
+==============+
|
||||||
|
|
||||||
|
represents a variable number of bytes.
|
||||||
|
|
||||||
|
Bytes stored within a computer do not have a "bit order", since
|
||||||
|
they are always treated as a unit. However, a byte considered as
|
||||||
|
an integer between 0 and 255 does have a most- and least-
|
||||||
|
significant bit, and since we write numbers with the most-
|
||||||
|
significant digit on the left, we also write bytes with the most-
|
||||||
|
significant bit on the left. In the diagrams below, we number the
|
||||||
|
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||||
|
the bits are numbered:
|
||||||
|
|
||||||
|
+--------+
|
||||||
|
|76543210|
|
||||||
|
+--------+
|
||||||
|
|
||||||
|
Within a computer, a number may occupy multiple bytes. All
|
||||||
|
multi-byte numbers in the format described here are stored with
|
||||||
|
the least-significant byte first (at the lower memory address).
|
||||||
|
For example, the decimal number 520 is stored as:
|
||||||
|
|
||||||
|
0 1
|
||||||
|
+--------+--------+
|
||||||
|
|00001000|00000010|
|
||||||
|
+--------+--------+
|
||||||
|
^ ^
|
||||||
|
| |
|
||||||
|
| + more significant byte = 2 x 256
|
||||||
|
+ less significant byte = 8
|
||||||
|
|
||||||
|
3.1.1. Packing into bytes
|
||||||
|
|
||||||
|
This document does not address the issue of the order in which
|
||||||
|
bits of a byte are transmitted on a bit-sequential medium,
|
||||||
|
since the final data format described here is byte- rather than
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 5]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
bit-oriented. However, we describe the compressed block format
|
||||||
|
in below, as a sequence of data elements of various bit
|
||||||
|
lengths, not a sequence of bytes. We must therefore specify
|
||||||
|
how to pack these data elements into bytes to form the final
|
||||||
|
compressed byte sequence:
|
||||||
|
|
||||||
|
* Data elements are packed into bytes in order of
|
||||||
|
increasing bit number within the byte, i.e., starting
|
||||||
|
with the least-significant bit of the byte.
|
||||||
|
* Data elements other than Huffman codes are packed
|
||||||
|
starting with the least-significant bit of the data
|
||||||
|
element.
|
||||||
|
* Huffman codes are packed starting with the most-
|
||||||
|
significant bit of the code.
|
||||||
|
|
||||||
|
In other words, if one were to print out the compressed data as
|
||||||
|
a sequence of bytes, starting with the first byte at the
|
||||||
|
*right* margin and proceeding to the *left*, with the most-
|
||||||
|
significant bit of each byte on the left as usual, one would be
|
||||||
|
able to parse the result from right to left, with fixed-width
|
||||||
|
elements in the correct MSB-to-LSB order and Huffman codes in
|
||||||
|
bit-reversed order (i.e., with the first bit of the code in the
|
||||||
|
relative LSB position).
|
||||||
|
|
||||||
|
3.2. Compressed block format
|
||||||
|
|
||||||
|
3.2.1. Synopsis of prefix and Huffman coding
|
||||||
|
|
||||||
|
Prefix coding represents symbols from an a priori known
|
||||||
|
alphabet by bit sequences (codes), one code for each symbol, in
|
||||||
|
a manner such that different symbols may be represented by bit
|
||||||
|
sequences of different lengths, but a parser can always parse
|
||||||
|
an encoded string unambiguously symbol-by-symbol.
|
||||||
|
|
||||||
|
We define a prefix code in terms of a binary tree in which the
|
||||||
|
two edges descending from each non-leaf node are labeled 0 and
|
||||||
|
1 and in which the leaf nodes correspond one-for-one with (are
|
||||||
|
labeled with) the symbols of the alphabet; then the code for a
|
||||||
|
symbol is the sequence of 0's and 1's on the edges leading from
|
||||||
|
the root to the leaf labeled with that symbol. For example:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 6]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
/\ Symbol Code
|
||||||
|
0 1 ------ ----
|
||||||
|
/ \ A 00
|
||||||
|
/\ B B 1
|
||||||
|
0 1 C 011
|
||||||
|
/ \ D 010
|
||||||
|
A /\
|
||||||
|
0 1
|
||||||
|
/ \
|
||||||
|
D C
|
||||||
|
|
||||||
|
A parser can decode the next symbol from an encoded input
|
||||||
|
stream by walking down the tree from the root, at each step
|
||||||
|
choosing the edge corresponding to the next input bit.
|
||||||
|
|
||||||
|
Given an alphabet with known symbol frequencies, the Huffman
|
||||||
|
algorithm allows the construction of an optimal prefix code
|
||||||
|
(one which represents strings with those symbol frequencies
|
||||||
|
using the fewest bits of any possible prefix codes for that
|
||||||
|
alphabet). Such a code is called a Huffman code. (See
|
||||||
|
reference [1] in Chapter 5, references for additional
|
||||||
|
information on Huffman codes.)
|
||||||
|
|
||||||
|
Note that in the "deflate" format, the Huffman codes for the
|
||||||
|
various alphabets must not exceed certain maximum code lengths.
|
||||||
|
This constraint complicates the algorithm for computing code
|
||||||
|
lengths from symbol frequencies. Again, see Chapter 5,
|
||||||
|
references for details.
|
||||||
|
|
||||||
|
3.2.2. Use of Huffman coding in the "deflate" format
|
||||||
|
|
||||||
|
The Huffman codes used for each alphabet in the "deflate"
|
||||||
|
format have two additional rules:
|
||||||
|
|
||||||
|
* All codes of a given bit length have lexicographically
|
||||||
|
consecutive values, in the same order as the symbols
|
||||||
|
they represent;
|
||||||
|
|
||||||
|
* Shorter codes lexicographically precede longer codes.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 7]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
We could recode the example above to follow this rule as
|
||||||
|
follows, assuming that the order of the alphabet is ABCD:
|
||||||
|
|
||||||
|
Symbol Code
|
||||||
|
------ ----
|
||||||
|
A 10
|
||||||
|
B 0
|
||||||
|
C 110
|
||||||
|
D 111
|
||||||
|
|
||||||
|
I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
|
||||||
|
lexicographically consecutive.
|
||||||
|
|
||||||
|
Given this rule, we can define the Huffman code for an alphabet
|
||||||
|
just by giving the bit lengths of the codes for each symbol of
|
||||||
|
the alphabet in order; this is sufficient to determine the
|
||||||
|
actual codes. In our example, the code is completely defined
|
||||||
|
by the sequence of bit lengths (2, 1, 3, 3). The following
|
||||||
|
algorithm generates the codes as integers, intended to be read
|
||||||
|
from most- to least-significant bit. The code lengths are
|
||||||
|
initially in tree[I].Len; the codes are produced in
|
||||||
|
tree[I].Code.
|
||||||
|
|
||||||
|
1) Count the number of codes for each code length. Let
|
||||||
|
bl_count[N] be the number of codes of length N, N >= 1.
|
||||||
|
|
||||||
|
2) Find the numerical value of the smallest code for each
|
||||||
|
code length:
|
||||||
|
|
||||||
|
code = 0;
|
||||||
|
bl_count[0] = 0;
|
||||||
|
for (bits = 1; bits <= MAX_BITS; bits++) {
|
||||||
|
code = (code + bl_count[bits-1]) << 1;
|
||||||
|
next_code[bits] = code;
|
||||||
|
}
|
||||||
|
|
||||||
|
3) Assign numerical values to all codes, using consecutive
|
||||||
|
values for all codes of the same length with the base
|
||||||
|
values determined at step 2. Codes that are never used
|
||||||
|
(which have a bit length of zero) must not be assigned a
|
||||||
|
value.
|
||||||
|
|
||||||
|
for (n = 0; n <= max_code; n++) {
|
||||||
|
len = tree[n].Len;
|
||||||
|
if (len != 0) {
|
||||||
|
tree[n].Code = next_code[len];
|
||||||
|
next_code[len]++;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 8]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
|
||||||
|
3, 2, 4, 4). After step 1, we have:
|
||||||
|
|
||||||
|
N bl_count[N]
|
||||||
|
- -----------
|
||||||
|
2 1
|
||||||
|
3 5
|
||||||
|
4 2
|
||||||
|
|
||||||
|
Step 2 computes the following next_code values:
|
||||||
|
|
||||||
|
N next_code[N]
|
||||||
|
- ------------
|
||||||
|
1 0
|
||||||
|
2 0
|
||||||
|
3 2
|
||||||
|
4 14
|
||||||
|
|
||||||
|
Step 3 produces the following code values:
|
||||||
|
|
||||||
|
Symbol Length Code
|
||||||
|
------ ------ ----
|
||||||
|
A 3 010
|
||||||
|
B 3 011
|
||||||
|
C 3 100
|
||||||
|
D 3 101
|
||||||
|
E 3 110
|
||||||
|
F 2 00
|
||||||
|
G 4 1110
|
||||||
|
H 4 1111
|
||||||
|
|
||||||
|
3.2.3. Details of block format
|
||||||
|
|
||||||
|
Each block of compressed data begins with 3 header bits
|
||||||
|
containing the following data:
|
||||||
|
|
||||||
|
first bit BFINAL
|
||||||
|
next 2 bits BTYPE
|
||||||
|
|
||||||
|
Note that the header bits do not necessarily begin on a byte
|
||||||
|
boundary, since a block does not necessarily occupy an integral
|
||||||
|
number of bytes.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 9]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
BFINAL is set if and only if this is the last block of the data
|
||||||
|
set.
|
||||||
|
|
||||||
|
BTYPE specifies how the data are compressed, as follows:
|
||||||
|
|
||||||
|
00 - no compression
|
||||||
|
01 - compressed with fixed Huffman codes
|
||||||
|
10 - compressed with dynamic Huffman codes
|
||||||
|
11 - reserved (error)
|
||||||
|
|
||||||
|
The only difference between the two compressed cases is how the
|
||||||
|
Huffman codes for the literal/length and distance alphabets are
|
||||||
|
defined.
|
||||||
|
|
||||||
|
In all cases, the decoding algorithm for the actual data is as
|
||||||
|
follows:
|
||||||
|
|
||||||
|
do
|
||||||
|
read block header from input stream.
|
||||||
|
if stored with no compression
|
||||||
|
skip any remaining bits in current partially
|
||||||
|
processed byte
|
||||||
|
read LEN and NLEN (see next section)
|
||||||
|
copy LEN bytes of data to output
|
||||||
|
otherwise
|
||||||
|
if compressed with dynamic Huffman codes
|
||||||
|
read representation of code trees (see
|
||||||
|
subsection below)
|
||||||
|
loop (until end of block code recognized)
|
||||||
|
decode literal/length value from input stream
|
||||||
|
if value < 256
|
||||||
|
copy value (literal byte) to output stream
|
||||||
|
otherwise
|
||||||
|
if value = end of block (256)
|
||||||
|
break from loop
|
||||||
|
otherwise (value = 257..285)
|
||||||
|
decode distance from input stream
|
||||||
|
|
||||||
|
move backwards distance bytes in the output
|
||||||
|
stream, and copy length bytes from this
|
||||||
|
position to the output stream.
|
||||||
|
end loop
|
||||||
|
while not last block
|
||||||
|
|
||||||
|
Note that a duplicated string reference may refer to a string
|
||||||
|
in a previous block; i.e., the backward distance may cross one
|
||||||
|
or more block boundaries. However a distance cannot refer past
|
||||||
|
the beginning of the output stream. (An application using a
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 10]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
preset dictionary might discard part of the output stream; a
|
||||||
|
distance can refer to that part of the output stream anyway)
|
||||||
|
Note also that the referenced string may overlap the current
|
||||||
|
position; for example, if the last 2 bytes decoded have values
|
||||||
|
X and Y, a string reference with <length = 5, distance = 2>
|
||||||
|
adds X,Y,X,Y,X to the output stream.
|
||||||
|
|
||||||
|
We now specify each compression method in turn.
|
||||||
|
|
||||||
|
3.2.4. Non-compressed blocks (BTYPE=00)
|
||||||
|
|
||||||
|
Any bits of input up to the next byte boundary are ignored.
|
||||||
|
The rest of the block consists of the following information:
|
||||||
|
|
||||||
|
0 1 2 3 4...
|
||||||
|
+---+---+---+---+================================+
|
||||||
|
| LEN | NLEN |... LEN bytes of literal data...|
|
||||||
|
+---+---+---+---+================================+
|
||||||
|
|
||||||
|
LEN is the number of data bytes in the block. NLEN is the
|
||||||
|
one's complement of LEN.
|
||||||
|
|
||||||
|
3.2.5. Compressed blocks (length and distance codes)
|
||||||
|
|
||||||
|
As noted above, encoded data blocks in the "deflate" format
|
||||||
|
consist of sequences of symbols drawn from three conceptually
|
||||||
|
distinct alphabets: either literal bytes, from the alphabet of
|
||||||
|
byte values (0..255), or <length, backward distance> pairs,
|
||||||
|
where the length is drawn from (3..258) and the distance is
|
||||||
|
drawn from (1..32,768). In fact, the literal and length
|
||||||
|
alphabets are merged into a single alphabet (0..285), where
|
||||||
|
values 0..255 represent literal bytes, the value 256 indicates
|
||||||
|
end-of-block, and values 257..285 represent length codes
|
||||||
|
(possibly in conjunction with extra bits following the symbol
|
||||||
|
code) as follows:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 11]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
Extra Extra Extra
|
||||||
|
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
|
||||||
|
---- ---- ------ ---- ---- ------- ---- ---- -------
|
||||||
|
257 0 3 267 1 15,16 277 4 67-82
|
||||||
|
258 0 4 268 1 17,18 278 4 83-98
|
||||||
|
259 0 5 269 2 19-22 279 4 99-114
|
||||||
|
260 0 6 270 2 23-26 280 4 115-130
|
||||||
|
261 0 7 271 2 27-30 281 5 131-162
|
||||||
|
262 0 8 272 2 31-34 282 5 163-194
|
||||||
|
263 0 9 273 3 35-42 283 5 195-226
|
||||||
|
264 0 10 274 3 43-50 284 5 227-257
|
||||||
|
265 1 11,12 275 3 51-58 285 0 258
|
||||||
|
266 1 13,14 276 3 59-66
|
||||||
|
|
||||||
|
The extra bits should be interpreted as a machine integer
|
||||||
|
stored with the most-significant bit first, e.g., bits 1110
|
||||||
|
represent the value 14.
|
||||||
|
|
||||||
|
Extra Extra Extra
|
||||||
|
Code Bits Dist Code Bits Dist Code Bits Distance
|
||||||
|
---- ---- ---- ---- ---- ------ ---- ---- --------
|
||||||
|
0 0 1 10 4 33-48 20 9 1025-1536
|
||||||
|
1 0 2 11 4 49-64 21 9 1537-2048
|
||||||
|
2 0 3 12 5 65-96 22 10 2049-3072
|
||||||
|
3 0 4 13 5 97-128 23 10 3073-4096
|
||||||
|
4 1 5,6 14 6 129-192 24 11 4097-6144
|
||||||
|
5 1 7,8 15 6 193-256 25 11 6145-8192
|
||||||
|
6 2 9-12 16 7 257-384 26 12 8193-12288
|
||||||
|
7 2 13-16 17 7 385-512 27 12 12289-16384
|
||||||
|
8 3 17-24 18 8 513-768 28 13 16385-24576
|
||||||
|
9 3 25-32 19 8 769-1024 29 13 24577-32768
|
||||||
|
|
||||||
|
3.2.6. Compression with fixed Huffman codes (BTYPE=01)
|
||||||
|
|
||||||
|
The Huffman codes for the two alphabets are fixed, and are not
|
||||||
|
represented explicitly in the data. The Huffman code lengths
|
||||||
|
for the literal/length alphabet are:
|
||||||
|
|
||||||
|
Lit Value Bits Codes
|
||||||
|
--------- ---- -----
|
||||||
|
0 - 143 8 00110000 through
|
||||||
|
10111111
|
||||||
|
144 - 255 9 110010000 through
|
||||||
|
111111111
|
||||||
|
256 - 279 7 0000000 through
|
||||||
|
0010111
|
||||||
|
280 - 287 8 11000000 through
|
||||||
|
11000111
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 12]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
The code lengths are sufficient to generate the actual codes,
|
||||||
|
as described above; we show the codes in the table for added
|
||||||
|
clarity. Literal/length values 286-287 will never actually
|
||||||
|
occur in the compressed data, but participate in the code
|
||||||
|
construction.
|
||||||
|
|
||||||
|
Distance codes 0-31 are represented by (fixed-length) 5-bit
|
||||||
|
codes, with possible additional bits as shown in the table
|
||||||
|
shown in Paragraph 3.2.5, above. Note that distance codes 30-
|
||||||
|
31 will never actually occur in the compressed data.
|
||||||
|
|
||||||
|
3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
|
||||||
|
|
||||||
|
The Huffman codes for the two alphabets appear in the block
|
||||||
|
immediately after the header bits and before the actual
|
||||||
|
compressed data, first the literal/length code and then the
|
||||||
|
distance code. Each code is defined by a sequence of code
|
||||||
|
lengths, as discussed in Paragraph 3.2.2, above. For even
|
||||||
|
greater compactness, the code length sequences themselves are
|
||||||
|
compressed using a Huffman code. The alphabet for code lengths
|
||||||
|
is as follows:
|
||||||
|
|
||||||
|
0 - 15: Represent code lengths of 0 - 15
|
||||||
|
16: Copy the previous code length 3 - 6 times.
|
||||||
|
The next 2 bits indicate repeat length
|
||||||
|
(0 = 3, ... , 3 = 6)
|
||||||
|
Example: Codes 8, 16 (+2 bits 11),
|
||||||
|
16 (+2 bits 10) will expand to
|
||||||
|
12 code lengths of 8 (1 + 6 + 5)
|
||||||
|
17: Repeat a code length of 0 for 3 - 10 times.
|
||||||
|
(3 bits of length)
|
||||||
|
18: Repeat a code length of 0 for 11 - 138 times
|
||||||
|
(7 bits of length)
|
||||||
|
|
||||||
|
A code length of 0 indicates that the corresponding symbol in
|
||||||
|
the literal/length or distance alphabet will not occur in the
|
||||||
|
block, and should not participate in the Huffman code
|
||||||
|
construction algorithm given earlier. If only one distance
|
||||||
|
code is used, it is encoded using one bit, not zero bits; in
|
||||||
|
this case there is a single code length of one, with one unused
|
||||||
|
code. One distance code of zero bits means that there are no
|
||||||
|
distance codes used at all (the data is all literals).
|
||||||
|
|
||||||
|
We can now define the format of the block:
|
||||||
|
|
||||||
|
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
|
||||||
|
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)
|
||||||
|
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 13]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
(HCLEN + 4) x 3 bits: code lengths for the code length
|
||||||
|
alphabet given just above, in the order: 16, 17, 18,
|
||||||
|
0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
|
||||||
|
|
||||||
|
These code lengths are interpreted as 3-bit integers
|
||||||
|
(0-7); as above, a code length of 0 means the
|
||||||
|
corresponding symbol (literal/length or distance code
|
||||||
|
length) is not used.
|
||||||
|
|
||||||
|
HLIT + 257 code lengths for the literal/length alphabet,
|
||||||
|
encoded using the code length Huffman code
|
||||||
|
|
||||||
|
HDIST + 1 code lengths for the distance alphabet,
|
||||||
|
encoded using the code length Huffman code
|
||||||
|
|
||||||
|
The actual compressed data of the block,
|
||||||
|
encoded using the literal/length and distance Huffman
|
||||||
|
codes
|
||||||
|
|
||||||
|
The literal/length symbol 256 (end of data),
|
||||||
|
encoded using the literal/length Huffman code
|
||||||
|
|
||||||
|
The code length repeat codes can cross from HLIT + 257 to the
|
||||||
|
HDIST + 1 code lengths. In other words, all code lengths form
|
||||||
|
a single sequence of HLIT + HDIST + 258 values.
|
||||||
|
|
||||||
|
3.3. Compliance
|
||||||
|
|
||||||
|
A compressor may limit further the ranges of values specified in
|
||||||
|
the previous section and still be compliant; for example, it may
|
||||||
|
limit the range of backward pointers to some value smaller than
|
||||||
|
32K. Similarly, a compressor may limit the size of blocks so that
|
||||||
|
a compressible block fits in memory.
|
||||||
|
|
||||||
|
A compliant decompressor must accept the full range of possible
|
||||||
|
values defined in the previous section, and must accept blocks of
|
||||||
|
arbitrary size.
|
||||||
|
|
||||||
|
4. Compression algorithm details
|
||||||
|
|
||||||
|
While it is the intent of this document to define the "deflate"
|
||||||
|
compressed data format without reference to any particular
|
||||||
|
compression algorithm, the format is related to the compressed
|
||||||
|
formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
|
||||||
|
since many variations of LZ77 are patented, it is strongly
|
||||||
|
recommended that the implementor of a compressor follow the general
|
||||||
|
algorithm presented here, which is known not to be patented per se.
|
||||||
|
The material in this section is not part of the definition of the
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 14]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
specification per se, and a compressor need not follow it in order to
|
||||||
|
be compliant.
|
||||||
|
|
||||||
|
The compressor terminates a block when it determines that starting a
|
||||||
|
new block with fresh trees would be useful, or when the block size
|
||||||
|
fills up the compressor's block buffer.
|
||||||
|
|
||||||
|
The compressor uses a chained hash table to find duplicated strings,
|
||||||
|
using a hash function that operates on 3-byte sequences. At any
|
||||||
|
given point during compression, let XYZ be the next 3 input bytes to
|
||||||
|
be examined (not necessarily all different, of course). First, the
|
||||||
|
compressor examines the hash chain for XYZ. If the chain is empty,
|
||||||
|
the compressor simply writes out X as a literal byte and advances one
|
||||||
|
byte in the input. If the hash chain is not empty, indicating that
|
||||||
|
the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
|
||||||
|
same hash function value) has occurred recently, the compressor
|
||||||
|
compares all strings on the XYZ hash chain with the actual input data
|
||||||
|
sequence starting at the current point, and selects the longest
|
||||||
|
match.
|
||||||
|
|
||||||
|
The compressor searches the hash chains starting with the most recent
|
||||||
|
strings, to favor small distances and thus take advantage of the
|
||||||
|
Huffman encoding. The hash chains are singly linked. There are no
|
||||||
|
deletions from the hash chains; the algorithm simply discards matches
|
||||||
|
that are too old. To avoid a worst-case situation, very long hash
|
||||||
|
chains are arbitrarily truncated at a certain length, determined by a
|
||||||
|
run-time parameter.
|
||||||
|
|
||||||
|
To improve overall compression, the compressor optionally defers the
|
||||||
|
selection of matches ("lazy matching"): after a match of length N has
|
||||||
|
been found, the compressor searches for a longer match starting at
|
||||||
|
the next input byte. If it finds a longer match, it truncates the
|
||||||
|
previous match to a length of one (thus producing a single literal
|
||||||
|
byte) and then emits the longer match. Otherwise, it emits the
|
||||||
|
original match, and, as described above, advances N bytes before
|
||||||
|
continuing.
|
||||||
|
|
||||||
|
Run-time parameters also control this "lazy match" procedure. If
|
||||||
|
compression ratio is most important, the compressor attempts a
|
||||||
|
complete second search regardless of the length of the first match.
|
||||||
|
In the normal case, if the current match is "long enough", the
|
||||||
|
compressor reduces the search for a longer match, thus speeding up
|
||||||
|
the process. If speed is most important, the compressor inserts new
|
||||||
|
strings in the hash table only when no match was found, or when the
|
||||||
|
match is not "too long". This degrades the compression ratio but
|
||||||
|
saves time since there are both fewer insertions and fewer searches.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 15]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
5. References
|
||||||
|
|
||||||
|
[1] Huffman, D. A., "A Method for the Construction of Minimum
|
||||||
|
Redundancy Codes", Proceedings of the Institute of Radio
|
||||||
|
Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
|
||||||
|
|
||||||
|
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
|
||||||
|
Compression", IEEE Transactions on Information Theory, Vol. 23,
|
||||||
|
No. 3, pp. 337-343.
|
||||||
|
|
||||||
|
[3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
|
||||||
|
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||||
|
|
||||||
|
[4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
|
||||||
|
available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
|
||||||
|
|
||||||
|
[5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
|
||||||
|
encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
|
||||||
|
|
||||||
|
[6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
|
||||||
|
Comm. ACM, 33,4, April 1990, pp. 449-459.
|
||||||
|
|
||||||
|
6. Security Considerations
|
||||||
|
|
||||||
|
Any data compression method involves the reduction of redundancy in
|
||||||
|
the data. Consequently, any corruption of the data is likely to have
|
||||||
|
severe effects and be difficult to correct. Uncompressed text, on
|
||||||
|
the other hand, will probably still be readable despite the presence
|
||||||
|
of some corrupted bytes.
|
||||||
|
|
||||||
|
It is recommended that systems using this data format provide some
|
||||||
|
means of validating the integrity of the compressed data. See
|
||||||
|
reference [3], for example.
|
||||||
|
|
||||||
|
7. Source code
|
||||||
|
|
||||||
|
Source code for a C language implementation of a "deflate" compliant
|
||||||
|
compressor and decompressor is available within the zlib package at
|
||||||
|
ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
||||||
|
|
||||||
|
8. Acknowledgements
|
||||||
|
|
||||||
|
Trademarks cited in this document are the property of their
|
||||||
|
respective owners.
|
||||||
|
|
||||||
|
Phil Katz designed the deflate format. Jean-Loup Gailly and Mark
|
||||||
|
Adler wrote the related software described in this specification.
|
||||||
|
Glenn Randers-Pehrson converted this document to RFC and HTML format.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 16]
|
||||||
|
|
||||||
|
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||||
|
|
||||||
|
|
||||||
|
9. Author's Address
|
||||||
|
|
||||||
|
L. Peter Deutsch
|
||||||
|
Aladdin Enterprises
|
||||||
|
203 Santa Margarita Ave.
|
||||||
|
Menlo Park, CA 94025
|
||||||
|
|
||||||
|
Phone: (415) 322-0103 (AM only)
|
||||||
|
FAX: (415) 322-1734
|
||||||
|
EMail: <ghost@aladdin.com>
|
||||||
|
|
||||||
|
Questions about the technical content of this specification can be
|
||||||
|
sent by email to:
|
||||||
|
|
||||||
|
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||||
|
Mark Adler <madler@alumni.caltech.edu>
|
||||||
|
|
||||||
|
Editorial comments on this specification can be sent by email to:
|
||||||
|
|
||||||
|
L. Peter Deutsch <ghost@aladdin.com> and
|
||||||
|
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Deutsch Informational [Page 17]
|
||||||
|
|
Reference in New Issue
Block a user