66 lines
1.5 KiB
Python
66 lines
1.5 KiB
Python
import io
|
|
import random
|
|
|
|
from PIL import Image
|
|
from flask import Flask, request, jsonify
|
|
import matplotlib.image as mpimg
|
|
import numpy as np
|
|
import numba
|
|
import pickle
|
|
import base64
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
@numba.njit
|
|
def optimized_mandelbrot(n_rows, n_columns, iterations, cx, cy):
|
|
x_cor = np.linspace(-2, 2, n_rows)
|
|
y_cor = np.linspace(-2, 2, n_columns)
|
|
output = np.zeros((n_rows,n_columns))
|
|
c = cx + 1j * cy
|
|
for i in range(n_rows):
|
|
for j in range(n_columns):
|
|
z = x_cor[i] + y_cor[j] * 1j
|
|
count = 0
|
|
for k in range(iterations):
|
|
z = (z*z) + c
|
|
count += 1
|
|
if np.abs(z) > 4:
|
|
break
|
|
output[i, j] = count
|
|
return output.T
|
|
|
|
|
|
def open_image_as_array(path):
|
|
return mpimg.imread(path)
|
|
|
|
|
|
def get_encoded_img(arr):
|
|
img = Image.fromarray(arr).convert("L")
|
|
img_byte_arr = io.BytesIO()
|
|
img.save(img_byte_arr, format='PNG')
|
|
encoded_img = base64.encodebytes(img_byte_arr.getvalue()).decode('ascii')
|
|
return encoded_img
|
|
|
|
|
|
@app.route('/getImage', methods=['GET'])
|
|
def get_image():
|
|
with open('data_100.pickle', 'rb') as f:
|
|
images = pickle.load(f)
|
|
buffered = io.BytesIO()
|
|
random.choice(images).save(buffered, format="JPEG")
|
|
img_str = base64.b64encode(buffered.getvalue())
|
|
return jsonify({
|
|
"code": 0,
|
|
"image": str(img_str),
|
|
"first_time": 1
|
|
})
|
|
|
|
|
|
def start_app():
|
|
app.run()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
start_app()
|